130 research outputs found

    The Storage Replenishment Problem in Rectangular Warehouses

    Get PDF
    In warehouses, storage replenishment operations involve the transportation of items to capacitated item slots in forward storage area from reserve storage. These items are later picked from these slots as their demand arises. While order picking constitutes the majority of warehouse operating costs, replenishment operations might be as costly in warehouses where pick lists generally consist of only a few lines (e.g., order fulfillment warehouses). In this study, we consider the storage replenishment problem in a parallel-aisle warehouse, where replenishment and order picking operations are carried out in successive waves with time limits. The aim is to determine the item slots that will be replenished and the route of the replenishment worker in each replenishment wave, so as to minimize the total labor and travel costs, and ensure the availability of items at the start of the wave they will be picked. The problem is analogous to the inventory routing problem due to the inherent trade-o between labor and travel costs. We present complexity results on different variants of the problem and show that the problem is NP-hard in general. Consequently, we use a heuristic approach inspired by those from the inventory routing literature. We use randomly generated warehouse instances to analyze the elect of different storage policies (random and turnover-based) and demand patterns (highly skewed or uniform) on replenishment performance, and to compare the proposed replenishment approach to those in practice

    Reinforcement Learning Approaches for the Orienteering Problem with Stochastic and Dynamic Release Dates

    Full text link
    In this paper, we study a sequential decision making problem faced by e-commerce carriers related to when to send out a vehicle from the central depot to serve customer requests, and in which order to provide the service, under the assumption that the time at which parcels arrive at the depot is stochastic and dynamic. The objective is to maximize the number of parcels that can be delivered during the service hours. We propose two reinforcement learning approaches for solving this problem, one based on a policy function approximation (PFA) and the second on a value function approximation (VFA). Both methods are combined with a look-ahead strategy, in which future release dates are sampled in a Monte-Carlo fashion and a tailored batch approach is used to approximate the value of future states. Our PFA and VFA make a good use of branch-and-cut-based exact methods to improve the quality of decisions. We also establish sufficient conditions for partial characterization of optimal policy and integrate them into PFA/VFA. In an empirical study based on 720 benchmark instances, we conduct a competitive analysis using upper bounds with perfect information and we show that PFA and VFA greatly outperform two alternative myopic approaches. Overall, PFA provides best solutions, while VFA (which benefits from a two-stage stochastic optimization model) achieves a better tradeoff between solution quality and computing time

    The Vehicle Routing Problem with Divisible Deliveries and Pickups

    Get PDF
    The vehicle routing problem with divisible deliveries and pickups is a new and interesting model within reverse logistics. Each customer may have a pickup and delivery demand that have to be served with capacitated vehicles. The pickup and the delivery quantities may be served, if beneficial, in two separate visits. The model is placed in the context of other delivery and pickup problems and formulated as a mixed-integer linear programming problem. In this paper, we study the savings that can be achieved by allowing the pickup and delivery quantities to be served separately with respect to the case where the quantities have to be served simultaneously. Both exact and heuristic results are analysed in depth for a better understanding of the problem structure and an average estimation of the savings due to the possibility of serving pickup and delivery quantities separately

    A bilevel approach for compensation and routing decisions in last-mile delivery

    Full text link
    In last-mile delivery logistics, peer-to-peer logistic platforms play an important role in connecting senders, customers, and independent carriers to fulfill delivery requests. Since the carriers are not under the platform's control, the platform has to anticipate their reactions, while deciding how to allocate the delivery operations. Indeed, carriers' decisions largely affect the platform's revenue. In this paper, we model this problem using bilevel programming. At the upper level, the platform decides how to assign the orders to the carriers; at the lower level, each carrier solves a profitable tour problem to determine which offered requests to accept, based on her own profit maximization. Possibly, the platform can influence carriers' decisions by determining also the compensation paid for each accepted request. The two considered settings result in two different formulations: the bilevel profitable tour problem with fixed compensation margins and with margin decisions, respectively. For each of them, we propose single-level reformulations and alternative formulations where the lower-level routing variables are projected out. A branch-and-cut algorithm is proposed to solve the bilevel models, with a tailored warm-start heuristic used to speed up the solution process. Extensive computational tests are performed to compare the proposed formulations and analyze solution characteristics

    Mathematical Programming Formulations for the Collapsed k-Core Problem

    Full text link
    In social network analysis, the size of the k-core, i.e., the maximal induced subgraph of the network with minimum degree at least k, is frequently adopted as a typical metric to evaluate the cohesiveness of a community. We address the Collapsed k-Core Problem, which seeks to find a subset of bb users, namely the most critical users of the network, the removal of which results in the smallest possible k-core. For the first time, both the problem of finding the k-core of a network and the Collapsed k-Core Problem are formulated using mathematical programming. On the one hand, we model the Collapsed k-Core Problem as a natural deletion-round-indexed Integer Linear formulation. On the other hand, we provide two bilevel programs for the problem, which differ in the way in which the k-core identification problem is formulated at the lower level. The first bilevel formulation is reformulated as a single-level sparse model, exploiting a Benders-like decomposition approach. To derive the second bilevel model, we provide a linear formulation for finding the k-core and use it to state the lower-level problem. We then dualize the lower level and obtain a compact Mixed-Integer Nonlinear single-level problem reformulation. We additionally derive a combinatorial lower bound on the value of the optimal solution and describe some pre-processing procedures and valid inequalities for the three formulations. The performance of the proposed formulations is compared on a set of benchmarking instances with the existing state-of-the-art solver for mixed-integer bilevel problems proposed in (Fischetti et al., A New General-Purpose Algorithm for Mixed-Integer Bilevel Linear Programs, Operations Research 65(6), 2017)

    Clinical laboratory automation: a case study

    Get PDF
    Background. This paper presents a case study of an automated clinical laboratory in a large urban academic teaching hospital in the North of Italy, the Spedali Civili in Brescia, where four laboratories were merged in a unique laboratory through the introduction of laboratory automation. Materials and Methods. The analysis compares the preautomation situation and the new setting from a cost perspective, by considering direct and indirect costs. It also presents an analysis of the turnaround time (TAT). The study considers equipment, staff and indirect costs. Results. The introduction of automation led to a slight increase in equipment costs which is highly compensated by a remarkable decrease in staff costs. Consequently, total costs decreased by 12.55%. The analysis of the TAT shows an improvement of nonemergency exams while emergency exams are still validated within the maximum time imposed by the hospital. Conclusions. The strategy adopted by the management, which was based on re-using the available equipment and staff when merging the pre-existing laboratories, has reached its goal: introducing automation while minimizing the costs

    Traditional vs. novel approaches to coastal risk management: A review and insights from Italy

    Get PDF
    Coastal areas frequently face critical conditions due to the lack of adequate forms of land use planning, environmental management and inappropriate coastal risk management, sometimes leading to unexpected and undesired environmental effects. Risk management also involves cultural aspects, including perception. However, the acknowledgement of risk perception by stakeholders and local communities, as one of the social pillars of risk analysis, is often lacking.. Starting from an overview of the risk concept and the related approaches to be addressed, the paper investigates the evolution of coastal risk management with a focus on the Italian case study. Despite the design and adoption of national policies to deal with coastal risks, coastal management still shows in Italy a fragmented and poorly coordinated approach, together with a general lack of attention to stakeholder involvement. Recent efforts in the design of plans aiming at reducing risks derived from climate change and mitigating their impacts (National Strategy on Climate Change Adaptation; National Climate Change Adaptation Plan; National Recovery and Resilience Plan activities) should be effective in updating knowledge about climate change risks and in supporting national adaptation policies

    The Bi-objective Long-haul Transportation Problem on a Road Network

    Full text link
    In this paper we study a long-haul truck scheduling problem where a path has to be determined for a vehicle traveling from a specified origin to a specified destination. We consider refueling decisions along the path, while accounting for heterogeneous fuel prices in a road network. Furthermore, the path has to comply with Hours of Service (HoS) regulations. Therefore, a path is defined by the actual road trajectory traveled by the vehicle, as well as the locations where the vehicle stops due to refueling, compliance with HoS regulations, or a combination of the two. This setting is cast in a bi-objective optimization problem, considering the minimization of fuel cost and the minimization of path duration. An algorithm is proposed to solve the problem on a road network. The algorithm builds a set of non-dominated paths with respect to the two objectives. Given the enormous theoretical size of the road network, the algorithm follows an interactive path construction mechanism. Specifically, the algorithm dynamically interacts with a geographic information system to identify the relevant potential paths and stop locations. Computational tests are made on real-sized instances where the distance covered ranges from 500 to 1500 km. The algorithm is compared with solutions obtained from a policy mimicking the current practice of a logistics company. The results show that the non-dominated solutions produced by the algorithm significantly dominate the ones generated by the current practice, in terms of fuel costs, while achieving similar path durations. The average number of non-dominated paths is 2.7, which allows decision makers to ultimately visually inspect the proposed alternatives

    The Team Orienteering Arc Routing Problem

    Full text link
    The team orienteering arc routing problem (TOARP) is the extension to the arc routing setting of the team orienteering problem. In the TOARP, in addition to a possible set of regular customers that have to be serviced, another set of potential customers is available. Each customer is associated with an arc of a directed graph. Each potential customer has a profit that is collected when it is serviced, that is, when the associated arc is traversed. A fleet of vehicles with a given maximum traveling time is available. The profit from a customer can be collected by one vehicle at most. The objective is to identify the customers that maximize the total profit collected while satisfying the given time limit for each vehicle. In this paper we propose a formulation for this problem and study a relaxation of its associated polyhedron. We present some families of valid and facet-inducing inequalities that we use in the implementation of a branch-and-cut algorithm for the resolution of the problem. Computational experiments are run on a large set of benchmark instances.The authors thank the reviewers for their comments that helped to provide an improved and clearer version of this paper. Angel Corberan, Isaac Plana, and Jose M. Sanchis wish to thank the Ministerio de Ciencia e Innovacion [Project MTM2009-14039-C06-02] and the Ministerio of Economia y Competitividad [Project MTM2012-36163-C06-02] of Spain for their support.Archetti, C.; Speranza, MG.; Corberan, A.; Sanchís Llopis, JM.; Plana, I. (2014). The Team Orienteering Arc Routing Problem. Transportation Science. 48(3):442-457. https://doi.org/10.1287/trsc.2013.0484S44245748
    corecore